
Bas ic Equatiuns

Chapter 2

2.1 Introduction

2-1

Basic Equations for Thermalhydraulic
Systems Analysis

2.1.1 Chapter Content

This chapter presents the basic mass, momentum and energy equations.

The equations are derived from first principles and the necessary approximations lead to the
requirements for empirical correlations. Closure is obtained by the equation of state.

Invariably in the modelling of fluids, the conservation equations are cast in one oftwo main
forms (Currie [CUR74]): integral or distributed approach, as illustrated in figure 2.1.

The differential form sees infrequent use in the analysis ofthermalhydraulic systems

Recourse is generally made to the integral or lumped form.
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The models used for the individual components are much simpler than that of the detailed
models based on the distributed approach.

Great care must be taken to ensure that the simpler models of the integral approach are
properly formulated and not misused.
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Basic Equations 2-3

2.1.2 Learning Outcomes

The overall objectives for this chapter are as follows:

Objective 2.1 The student should be able to identify the terms and symbols used in
thermalhydraulics.

Condition Closed book written examination.

Standard 100% on key terms and symbols.

Related Fundamental hydraulic and heat transfer phenomena.
concept(s)

I
Classification Knowledge Comprehension Application Analysis Synthesis Evalu

ation

Weight a a !
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Basic Equations 2-4

Objective 2.2 The student should be able to distinguish between the differential and
integral form and be able to choose, with justification, the correct form
to use in various situations.

Condition Closed book written or oral examination.

Standard 100%.

Related Mathematical forms of the conservation equation.
concept(s)

Classification Knowledge Comprehens~ApplicationlAnalysis Symhesis Evalu
ation

IWeight a a a
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Objective 2.3 The student should be able to recall typical values and units of
parameters.

Condition Closed book written or oral examination.

Standard 100% on key terms and symbols.

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evalu
ation

Weight a
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Objective 2.4 The student should be able to recognize key physical phenomena.

Condition Open book written or oral examination.

Standard 100% on key items, supporting material used only as memory triggers.

Related
concept(s)

Classification Knowledge Comprehension IApplication Analysis Synthesis Evalu
ation

-

Weight a
-
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Objective 2.5 The student should be able to recognize the coupling between mass,
momentum, energy and pressure in thermalhydraulic systems.

Condition Closed book written or oral examination.

Standard 100%.

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evalu
ation

Weight a
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Objective 2.6 The student should be able to choose approximations as appropriate (#
of dimensions, transient or steady state, averaging, spatial resolution,
etc.) with justification.

Condition Open book written or oral examination.

Standard 75%.

Related
concept(s)

Classification Knowledge Comprehension Application Analysis Synthesis Evalu
ation

Weight a a a a [ a
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2.1.3 The Chapter Layout

The exploration proceeds by first establishing and discussing the general principle of
conservation.

Next, this general principle is applied in turn to mass, momentum and energy to arrive at the
specific forms commonly seen in the systems approach.

Closure is then given via the equation of state and by SuppOliing empirical correlations.

Finally, the ideas developed are codified in a diagrammatical representation to aid in the
physical interpretation of these systems of equations and to provide a summary ofthe main
characteristics of fluid systems.
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Basic Equations 2-10

2.2 Conservation

We start, both historically and pedagogically, with a basic experimental observation:
"CONSERVATION".

This was, and is, most easily understood in terms of mass:
"WHAT GOES IN lVTIJST COME OUT UNLESS IT STAYS THERE

OR IS GENERATED OR LOST SOMEHOW".

Although this should be self- evident, it is important to realize that this is an ~.xperimental

observation.

( I )+ ff S, n ds
s

f I f fdV
v

f f I 1/1dV =
v

If we further assume that we have a continuum, we can mathematically recast our basic
experimental observation for any field variable, 1/1:

D

Dt

where
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2-11

substantial derivative l = change due to time variations plus change due to
movement in space at the velocity of the field variable, ltJ,
arbitrary fluid volume,
net sum of local sources and local sinks of the field variable, ~J, within the
volume V,
field variable such as mass, momentum, energy, etc.,
time,
surface bounding the volume, V,
unit vector norma) to the surface, and
net sum of local sources and local sinks of the fluid variable, ltJ, on the
surface s.

I for a lucid discussion of the three time derivatives, i!..-, D, ~. see [Bl R60, pp 73·74]. reproduced as appendix I.
at at dl
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We can now use Reynold's Transport Theorem (a mathematical identity discusst:d in detail
in appendix 2):

D

Dt III 1V dV
v

= Ilf
v

01V dV
cit

+ II 1V V ' n ds
s

(2)

where
a/at = local time derivative, and
v = velocity of the field variable,

to give
~

a1VIII at dV -
v

-II 1.jJ V . n ds

s
+ Ilf rdV

v
+ II s· n cis.

s
(3)

In words, this states that the change in the conserved field variable 1V in the volume V is due
to surface flux plus sources minus sinks.
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Basic EqllaliollS

We can use another mathematical identity (Gauss' Divergence Theorem):

II A' n ds = II f \1. A dV ,
s v

where
A = any vector, such as velocity, and
\1 = Del operator (eg. V = a/ax i + a/oy j + ...) .

Thus equation 3 can be rewritten:

2-13

(4)

III ~~ dV =
v

-III \1. ljJ v dV
s

+ III I'dV +
v

III \1. S dV.
v

(5)

(6)

If we assume that this statement is universally true, i.e. for any volume within the system
under consideration, then the following identity must hold at each point in space:

aljJ = -\1'ljJv + r + v·s.
at

This is the distributed or microscopic form. Equation 3 is the lumped or macroscopic form.
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Basic Equations

One should keep in mind the basis for these equations:

2-14

1) Conservation as an experimental observation.
It helps to keep in mind the distinctly different roles that we have historically assigned to the
players in the conservation process:

a) the local time derivative, 31jJ/at,
b) the advection term (flux), \7'ljJv,
c) the local sinks and sources, I', with ina volume and
d) the local sinks and sources, S, on the surface of a volume.

2) The field variables are continuous within the volume V.

BUYER BEWARE.

We now proceed to treat the mass, mom..:ntU!ll and energy equations in turn.
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Bas ic Equations

2.3 Conservation of Mass

Historically, mass was the first variable observed to be conserved:

2-15

JJJ :t (Yk Pk) dV
v

= - JJ Yk Pk V k . II ds +

s
JJI rkdV

v

+ Jf Sk n . ds
s

(6)

where
PI: = density of phase k (1 = liquid, 2' vapour),
Yk = volume fraction of phase, k, in volume V, and
f'k Sk = phase sinks and sources, including chemical and nuclear effects.,

The average density is defined as:

p = YIP i + Y2 P2 = (1 -- ex) PI + ex P2 ' (7)

where
P = average density, and
ex = void fraction.
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Adding both phases together, equation 7 becomes:

2-16

".
"'-

JJJ :t [(1
v

- ex)p] + exP2]dV = - II [(1 - ex) PI"] + UP2"2]'nds
s

+ JJJ (r j + r 2) dV j- II (SI + S2)' n ds,
v s

(X)

In our case, r l = - r 2 (liquid boils or vapour condenses) and Sk = 0 (no mass sources or
sinks at surfaces), Therefore:

where

IJJ ~~ dV =
v

II P" . n ds
s

(9)

p" = (l - a) PI V I I ex P2 v 2 ' (10)

D:\TEAClflrhai-IITSLIOverhnd\over2,wn8 Jan~lry 23, 1998 J4-4~



Basic EqUdtiol1s

Ifwe apply Gauss' Theorem and drop the integrals we have:

ap+'Vopvo
at

or

~~ [(1 - ex) PI + ex P2] + \I 0 [( I - ex) Pl V j + <X P2 vJ = o.

2-17

(II)

( 12)

This is the distributed form useful for mode lling detailed flow patterns such as in the
calandria, vessels, steam generators and headers. Component codes such as THIRST
[CAR81a] and COBRA [BNW76] use this approach.
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Bas ic Equations 2-18

In contrast, system codes such as SOPHT [eI-IA 77a], based on Porsching's work [POR71],
use the lumped equations.

These codes represent a hydraulic network of pipes by nodes joined by links, discussed in
detail in chapter 3.

Mass, pressure and energy changes occur at tl.c nodes.

Momentum changes occur in the links.

Flow details in pipes are not considered.

The m<tin sources of error:
The coarseness of the discretization in th~ direction of flow (i.e. node size)
The friction factors
The heat transfer coefficients.



Basic EqualiOl--=-'s _

Now, f f f pdV is the mass, Mj, in the volume. Vj' of the ilh node.

2-19

The surface integral can be written as surface inkgrals over the individual flow paths into
and out of the volume or node. That is,

-JJ
s

p v . n ds = )' p. v. A.,
~ J J J, ( 13)

where j represents inflow and outflow links with vj > 0 for inflow and <0 for outf10w.

Inherent in equation 11 is the assumption that the integral, JJ p v . n ds can be replaced by

s
the simple product Pj vj Aj . This implies kno\\ 11 or assumed (usually uniform) velocity and
density profiles across the face ofthe link (or pipe).
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Thus we now have:

7.-20

where Wj is the mass flow.

aM.
I =L

J

p. v. \
J J J

(14)

This is the typical representation in system c' Ilks.
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Basic Equations 2-21

To conclude our progressive simplification, \' ~ note the steady state form of equation 15:

L
J '""'P· v. A. =' W. = o.

J J J .L... J ( 15)

For a simple circular flow loop, the mass 110\\ rate at steady state is a constant at any point
in the loop.

Local area and density variations thus give n,e to velocity variations around the loop.

Local velocity then is:

\\.
v -- - -

P '.
(16)
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Basic Equations

2.4 Conservation of Momentum

2-22

In the integral sense, the rate of change 0,0\111 mentum is equal to the forces acting on the
fluid. Thus:

D

Dt JJJYk Pk V k dV
v

= JJOk' n cis
s

III Yk PI< f k dV +
v

JJJ MkdV,
\j

(17)

where
° is the stress tensor (i.e., short range l' SUI face effects including pressure, viscosity,

etc.),
f is the long range or body force (i.eo. gl lvitv),

and
M is the momentum interchange flinCI 011 accounting for phase change effects.
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Basic Equations

Using Reynold's Transport Theorem, we g.el

JJJ :t (Yk Pk ,\)dV -j I (Y k Pk vk)(vk'n)ds
v

2-23

<-

= JJ Ok' n ds + JJJ "( k

S V

f h dV + IJJ M k dV.
v

( 18)

Adding both phases together as per the mass, qU:ltion, we find:

a
JJJ at

v

pV dV + JJ pv(v·u)d· ,

s
II o'uds + JJJ pfdV.

s v
( 19)

To get the microscopic form ,ve use Gauss' s tl ~orlll1 and drop the volume integral as before
to leave:

a
- (pv) + \l'P"at

\"0 + pf. (20)
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Basic Equ{/Iions

The stress tensor, G, can be split into the !Wr! al and shear components:

2-24

where P is the pressure,
I is the unity tensor and
1" is the shear stress tensor.

G = -- PI j 1" , (21 )

This enables the explicit use of pressure and e1ps maintain our tenuous link with reality.

Equation 21 becomes:

a
- (pv) + v'pvv = VP + V'T + pf.
at (22)

This is the form commonly seen in the literati
mass conservation equation. The term, V:,

e, lIseful for distributed modelling as per the
usually replaced by an empirical relation.



(23 )

Basic Equations 2-25

For the system codes using the node-link S' ucture, we switch back to the macroscopic
form, Equation 20.

If the surface integral for the advective term performed over the inlet and outlet areas of
the pipe (link) in question, then:

II pv(v'n)ds = I I PV(\ II)ds + I I pv(v'n)ds,
s A 1N A OUT

where AIN is the flow inlet area and AOUT is t _' now outlet area.

.rI a k • n ds ' rII p f dV .
s v

If we assume the properties are constant ave

u apv A
Y - IN PIN V IN V INat

the areas, then:

A OUT POUT VOUT V OUT =

(24)
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Basic Equations 2-26

Alternatively we could perform a cross- sectil .l1al average ofeach term, usually denoted by

< >, where « » = 1/ A JJ()ds .
s

Ifwe assume the properties, V, p and A are ( lllstant along the length of the pipe, then the
second and third terms cancel.

Equation 25 can be rewritten as:

V 2pv = - JJ PI·nds + JJJ (V·'C + f)dV

s v

= - A OUT POUT + A IN POUT
V

J (~ + k) vlvl
2gc

(25)

- LAp sinCe) g/gc'
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Bas ic Equalions

where

gc is the gravitational constant,

g is the acceleration due to gravity

\7·t and pf evaluated by empirical correlations (the standard friction factor)

elevation change term (8 is the angle w.r.t. the horizontal).

.':.~.

2·27

Note that is AOUT * ArN then, even for constant pressure, there is a net force on the volume
causing it to accelerate if it were not restrained.

In a restrained system such as HTS piping, the piping supports exert an equal and opposite
force on the volume.

Thus when the area differences are explicitly modelled, the appropriate body forces must
be included. Generally, it is simpler to use an average or representative area for the IN and
OUT surfaces and to add entrance and exit frictional losses explicitly in the (fllD+k) term.
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Basic Equ(ltions 2-28

Assuming one dimensional flow and defining the mass flow as W == PVA, and L as the pipe
length, equation 26 becomes:

aw
at

A

L ( fL 1 w
2

- -- + k
(PIN - POUT) D 2g

c
pA ~ - A P g/ gc sin (8) , (26)

(27)

which is the form typically used in system codes.

If circumstances require, extra terms can be added.

For instance, if a pump is present this can be considered to be an external force acting
through head, i1Ppump' Equation 27 would then become:

aw
L -- = AOUT POUT + A IN PIN + A i1 P .. +at I p.ITIlp
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Basic E(/uafiolls 2-29

The momentum flux terms (Apv2
) in equation 25 could also be added if large area or

property changes were present or the effect could be included in the friction term.

In the steady state, for a constant area pipe with no pump and no elevation change:

(
fL J V

2
r' fL ) W

2

P -P -r=P -+k --= -+k
IN au, D 2g \ D ? A. 2c / - - P gc

(28)

One cannot hope to accurately model such phenomena as void propagation and other two
phase transient flow effects using lumped single phase equations unless a large number of
nodes and links are used.
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2.5 Conservation of Energy

The mathematical statement of the conservation of energy is:

~l IJI Yk P, ( ck + ~ v;) dV = - II qk' n ds + III Ek dV
v s v

2·30

+ IJI YkPkfkovkdV
v

where
ek - internal energy of phase k,
qk = surface heat flux for phase k, and
Ek = internal heat sources and sinks of phase k.

(29)

+ IJ (a k . n) . v kds ,
s

The right hand side terms are, respectively:
1) surj~lce heat f] ux,
2) internal sources and sinks,
3) work due to long range body forces (gravity, etc.),
4) work due to short range forces (surface tension, pressure, etc.).
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Basic J:'((I/alhms

Using Reynold's Transpoli Theorem again:

If[ ~t [Yk Pk ( ek + ~ v;)] dV + I{ Yk Pk ( ek + ~ v;1v, n ds

2-31

= - JJ q k . n ds + JJI Ek d V
s v

+ JJJ YkPkfk'VkdV
v

+ JJ (a k • n) . v k ds .

s

(30)

Summing over k, the mixture equation becomes:

IJJ :t [p e + ~ PV 2 dV + JJIPe +
v s L

1

1 P v 2 lv' n ds
2

+ JIJ pf'v dV + IJ (a'v)'vds,= - JJ q . n ds

s
+ IJJEdV

v v s

(31)

where
pe = YjPje j + Y2P2e2 and E = E j+E2, etc.
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= - JJ q . n ds + JJJEd V
s v

Basic Equations

Using Gauss' Theorem to change some of the surface integrals to volume integrals:

ff[ :t [p e +i pv 2 ] dV + f[ pe v· n d s + ff[ \7. [~ P V 2 +v
+ fJJ P f· v dV + JJJ v, (a . v) d V .

v v

Since
0= -- PI + 1" ,

ffI V'(o'v) dV = Iff [\7. (1"'v) - V'(Pv)] dV.
v v

This is the total energy equation, composed of thermal terms and mechanical terms.

2-32

(32)
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We can separate the two by first generating the mechanical terms from the momentum
eqlJation (equation 20). Forming the dot product with velocity we get:

JJJ ~~ (pv)'vdV -" JJJ v'(v'pvv)dV = JJJ v'('l'-r:) dV
v v v

Now

-JJJ v· 'lP dV
v

+ JJJ pf·vdV.
v

(33)

v'('l'-r:) = 'l(1"v) - 1': 'lv,

v . vP = 'l· (P v) - P V' v ,

(34)

(35)
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Ells ic. £((1101 iOlis

Using these identities and subtracting equation 34 from equation 33, we get:

2-35

JJJ :i (p e) dV + JJp e v . n d s = - JJ q . n ds
v s S

(38)

+ JJJEd V + JJJ or: \7 v dV - ffJ P v .v d V .
v v v

This is the thermal form of the energy equation.

This form of the energy equation can be used to generate the thermal conductance equation
for solids.

By setting fluid velocity to zero and converting surface integrals to volume integrals we get
the distributed form:

aat (pe) = -\7'q + E, (39)

where E is the internal energy generation rate term.
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F1'0111 thcrlnodynalnics, for solids, we have:

a Be- (pe) ~ p _
at dt

and using Fourier's 18w DJf heat conduction;
'-

~ p c
v

aT
at' (40)

q = -k\7T ,

we have the classical fonn of the heat conduction equation:

aT
pC -==V·kVT+E

v at

(41 )

== k \72 T + E for space independent k.
(42)
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1111.1' ie' "If /1111 i""s 2-37

This is use ful for determining the temperature distributions in boiler tube walls, piping walls
and reactor fuel pencils.

To generate the node-link forms we now turn back to the integral form of equation 39. If
we assume that the density and enthalpy are uniform over the node (the volume in question),
then

where

(JJ ~ (p e) dV" atv

au
- at' (43)

u ~ Vpe = LApe. (44)
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Basic Equations . 2-38

The integral of the transport term can be written over the flo\v surfaces:

II pev'nds = II pev·nds + II pev·nds + .... ,

S Al A z

(45)

where A I' A 2, etc., are the pipe flow cross- sectional areas.

For inflow, v·n is negative.
For outflow, v'n is positive.

(46)

p ev A..
I

s

Assluning unifonn velocity, enthalpy and density across the link (pipe) cross-section gives:

JJp e v . n ds = - L p e v Ai + L
IN FLOW OUT FLOW

- -L WIN elN + L WOUT eOUT '
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Bus ic Eq/w! jons 2-39

The heat flux and generation terms of the thermal energy equation can be lumped into a
loosely defined heat source for the volume.

-ff q' n ds
s

+fffEdV=Q.
v

(47)

Therefore, the thermal energy equation becomes:

(:nJ
cit

- L WIN e lN - L WOUT eour + Q + fff-r::VvdV-
v

fff P'V' v dV '(48)

V

The last two terms are the irreversible and reversible internal energy converSIOn,
respectively.
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Basic Equarions

Some system codes track enthalpy rather than internal energy. Defining:

h=enthalpy=e+P/p and H = V ph.

we can rewrite equation 39 as follows:

III a(p l~ t - P) d V + II (p h - P) v . n d s = - II q . n ds
v s s

2·40

(49)

+ III EdV
v

+ III 1':\7v dV
v

-I P\7· v dV.

v

(50)

Collecting the pressure terms and simplifying yields:

III :t (p h) d V
v

+ IIp h v· n ds =
s

-I'J q' n ds
s

+ fIIEdv
v

+ III 1':Vv
v

+ III ~: dV
v

+ II P v· n ds
s

- JJf P\7· v dV.
v

(51 )
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The surface integral over P can be transformed into a volume integral using Gauss' theorem
and combined with the last term to give:

JJ P v· n ds
s

-fJJ P \7. v d V = JJJ \7. (P v) dV
v v

= JfJv . \7 Pd V .
v

- JJJ P\7'vdV
v

(52)

(53)

The enthalpy flux terms can be evaluated in the same manner that the energy flux terms
were in equations 46-47. Thus,

JJ ph v . n d s = - L WIN hIN + L WOUT hOUT .

S
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Fin:t1ly, lIsing equations 48, 50,53- 54, equation 52 becomes:

(j]-I '" "-
~ = +~ WIN h IN - ~ WOUT hOUT + Qat

+JfJTVvdV+ JfJ(~~ + v-Vp)dV.
v v

(54)

The integral term involving pressure is often neglected since it is usually negligible
compared to the other terms.

The turbulent heating term is usually approximated by adding pump heat as a specific form
ofQ.

Equation 55 in the steady state, neglecting turbulent heating and the pressure terms, is the
familiar:

Q = L W OUT hoUT - L WIN h1N . (55)
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Fo!' a reactor or a boiler (one flow in, one flow out):

Q ~ W (hOUT - hlN) := W Cp (TOUT - TIN) in single phase. (56)

Another special case of equation 55 is obtained by expanding the term Q in equation 48:

-.fJq . n ds ~ JJf E dV == Q .
s v

Using Newton's Law of cooling for convection:

q . n = hN (T - T s) , (57)

vvhcre
q'n ­
T =
T =s

hN =

heat flux nonl1al to surface, S,

Telnperature of fluid
TClnperature of surface (wall), and
heat transfer coefficjent,
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Equation 55, neglecting the pressure terms, becomes:

V aph - V ap ( == V ape 0- V C aTl = '" W h -" W hatat at p Vat) 0 IN IN 0 OUT OUT

(58)

- A hN (T - Ts) + v E + JJf 1:: V'v dV .
v

which is useful for accounting for heat transfer between the fluid and the pipe or tube walls
(eg: boiler heat transfer).

The heat transfer coefficient, hN, is supplied through empirical relations. The turbulent
heating term III 1': V'v d V generally can be neglected or added as a pump heat term.

v
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2.6 The Equation of State

2-45

From the conservation equations, we have three equations for each phase (mass, momentum
and energy conservation) and four unknowns:

1) density, p or mass, Vp,

2) velocity, v, or mass flow, W, or momentum, pv,

]) energy, e, or enthalpy, h = e + P/ p, or temperature, T = fn(e) or fn(h), and

4) pressure, P.

The fourth equation required for closure is the equation of state:
P = fn(h,p) or p = fnCP,T), etc.

Thermodynamic equilibrium is usually assumed.

(59)

Use tables of properties or curve fits. The equation ofstate is discussed in detail in chapter
4.
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2.7 Empirical Correlations

Supporting relations are required

1) relationship between quality and void fractions;

2) the stress tensor, 't (friction);

3) heat transfer coefficients;

4) thermodynamic properties for the equation of state;

5) flow regime maps to guide the selection of empirical correlations;

6) special component data for pumps, valves, steam drums, ... ;

2-46

7) critical heat flux information (not needed for the solution of the equations but a
measure of engineering limits is needed to guide the use of the solutions;
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The three Inajar asslunptions Inade for the primary heat transport system are:

1) one dilnensional flow;

2) thennal equilibriull1 (except for the pressurizer under insurge); and

3) one fluid lnodel (i.e. Inixture equations).

2-47

These ;11'(' required because of state of the ali liInitations (however, two fluid model~ ae
being lIsed increasingly in recent years.).

En1pirical correlations are discussed in lllore detail in chapter 7.
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2.8 Solution Overview

Figure 2.2 illustrates the equations and the information links between them.

2-48

In words, the momentum equation gives the flows or velocities from one node to another,
or from one grid point to another, based on a given pressure, flow, mass and energy
distribution.

The updated flows are used by the mass and energy equations to update the mass and energy
contents at each location.

The new mass and energy are given to the equation of state to update the pressure
distribution.

The new pressure, along with the new densities and energies are used by the momentum
equation, and so on.

In this manner, a time history of the fluid evolution is obtained.
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A further point to note on the solution overview is that each phase in a multiphase flow has
a main information flow path as shown in figure 2.3.

In the full UVUEUP (unequal velocity, energy and pressure) model, there are two distinct
phases:

the vapour phase
the liquid phase.

If a simplified model was imposed, this essentially means that the planes would touch at
some point.

For instance, if equal pressure in both phases was assumed, then figure 2.4 would result.
Here, the equation of state is common to both planes.

The HEM (homogeneous equilibrium model) is the fully collapsed case where both planes
collapse into one (figure 2.2).
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2.9 Exercises

2·50

1. For a pool-type research reactor as shown in figure 2.5, which form of the mass,
momentum and energy conservation equations are the appropriate ones to use for the
following cases:
a. Pipe connecting the pool to the Hold Up Tank (HUT)
b. Mixing within the HUT
c. Pipe connecting the HUT to the Heat Exchanger (HX)
d. The HX
c. Flow through the fuel assemblies.
f. The Pool
For each case, write out the appropriate equations.
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2. For the same pool-type reactor:
a. Derive the simple steady state overall reactor core heat balance equation relating

the reactor power, core flow and core 1:1T. Defend your assumptions.
b. Would the reactor coolant outlet ~T change very much when the reactor power

changes? Explain.
c. Derive the simple steady state equation to determine the Heat Transport System

flow. Defend your assumptions.
d. Would the reactor coolant flow change very much when the reactor power or

temperature changes? Explain.
e. Based on the above, in modelling which needs to be detelmined first, the heat

transfer situation or the hydraulic situation?

3. Referring to figure 2.2:
a. Explain the inter-relationship between the mass, momentum and energy equations

and the equation of state.
b. For the integral form, devise a simple solution scheme for the transient equations.

Show what equations are being solved and how they are being solved. Flow chart
your scheme.
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Basi,~' Equations

MOMENTUM

O~~o~ EQUATION ".'
~'-~

«v~~
+I.C. +B.C. o~O~

o~ Q>~.

.~
~o
~

w c:
a: 0

MASS -- ENERGY:::> ••
~

EQUATION en E EQUATIONen ...
+ I.C. + B.C. W 0 + I.C. + B.C.

a: -0.- c:.-
~~

~0~o
~~$'~

EQUATION «;C§
~

OF STATE ..s-
(PreSf;ure = fn (M<lss, Energy))

Figure 2.2 The four C(lmerstul,e single phase flow equations and the flow of infonnation tetween them.
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Figure 2.3 The four cornerstone equations for the full two-fluid model.



Basic Equations

Figure 2.4 The four cornerstone equations for the two-fluid model with equal pressure of the two phases.

2-55
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