Basic Equations 2-1

Chapter 2 Basic Equations for Thermalhydraulic
Systems Analysis

2.1 Introduction
2.1.1 Chapter Content
This chapter presents the basic mass, momentum and energy equations.

The equations are derived from first principles and the necessary approximations lead to the
requirements for empirical correlations. Closure is obtained by the equation of state.

Invariably in the modelling of fluids, the conservation equations are cast in one of twc main
forms (Currie [CUR74]). integral or distributed approach, as illustrated in figure 2.1.

The differential form sees infrequent use in the analysis of thermalhydraulic systems.

Recourse is generally made to the integral or lumped form.
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Basic Equaiions

The models used for the individual components are much simpler than that of the detailed
models based on the distributed approach.

Great care must be taken to ensure that the simpler models of the integral approach are
properly formulated and not misused.
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2.1.2 Learning Outcomes

The overall objectives for this chapter are as follows:

Objective 2.1

The student should be able to identify the terms and symbols used in
thermalhydraulics.

Condition Closed book written examination.

Standard 100% on key terms and symbols.

Related Fundamental hydraulic and heat transfer phenomena.

concept(s)
!

Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evalu

| ation

[

Weight a a |
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Objective 2.2

The student should be able to distinguish between

mtegral form and be able to choose, with justification, the correct form

to use 1n various situations.

the differential and

Condition Closed book written or oral examination.

Standard 100%.

Related Mathematical forms of the conservation equation.

concept(s)

Classification | Knowledge | Compreheunsion | Application | Analysis | Synthesis | Evalu

ation

Weight

ad d a
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Basic Ecuations 2-5

Objective 2.3 | The student should be able to recall typical values and units of

parameters.
Condition Closed book written or oral examination.
Standard 100% on key terms and symbols.
Related
concept(s)

Classification | Knowledge | Comprehension | Application [ Analysis | Synthesis | Evalu
ation

Weight a
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Objective 2.4 | The student shouid be able to recognize key physical phenomena.

Condition Open book written or oral examination.

Standard 100% on key items, supporting material used only as memory triggers.
Related

concept(s)

Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evalu
ation

Weight a
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Basic Fquations 2-7
Objective 2.5 | The student should be able to recognize the coupling between mass,
momentum, energy and pressure in thermalhydraulic systems.
Condition Closed book written or oral examination,
Standard 100%.
Related
concept(s)
Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evalu
ation
Weight a
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Objective 2.6 | The student should be able to choose approximations as appropriate (#
of dimensions, transient or steady state, averaging, spatial resolution,

etc.) with justification.

Condition Open book written or oral examination.

Standard 75%.

Related

concept(s)

Classification | Knowledge | Comprehension | Application | Analysis | Synthesis | Evalu

ation

Weight a a a a a
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2.1.3 The Chapter Layout

The exploration proceeds by first establishing and discussing the general principle of
conservation.

Next, this general principle is applied in turn to mass, momentum and energy to arrive at the
specific forms commonly seen in the systems approach.

Closure 1s then given via the equation of state and by supporting empirical correlations.
Finally, the 1deas developed are codified in a diagrammatical representation to aid in the

physical interpretation of these systems of equations and to provide a summary of the main
characteristics of fluid systems.
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2.2 Conservation

We start, both historically and pedagogically, with a basic experimental observation:
"CONSERVATION".

This was, and is, most easily understood in terms of mass:
"WHAT GOES IN MUST COME OUT UNLESS IT STAYS THERE
OR IS GENERATED OR LOST SOMEHOW",

Although this should be self- evident, it is important to realize that this is an experimental
observation.

If we further assume that we have a continuum, we can mathematically recast our basic
experimental observation for any field variable, :

%ff\{tl}d\fsz{’[‘d\f+f£s-nds 0

where
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D/Dt

substantial derivative’ = change due to time variations plus change due to
movement in space at the velocity of the field variable, s,

V =  arbitrary fluid volume,

I' = netsum of local sources and local sinks of the field variable, s, within the
volume V,

¢ = field variable such as mass, momentum, energy, etc.,

t time,

s = surface bounding the volume, V,

n = unit vector normal to the surface, and

S net sum of local sources and local sinks of the fluid variable, {1, on the
surface s.

' For a lucid discussion of the three time derivatives, % ; P—, 4 . sce [BIRGO, pp 73-74], reproduced as appendix 1.
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We can now use Reynold’s Transport Theorem (a mathematical identity discussed in detail

in appendix 2):
DI fff‘“dv [I] 58V [ wvomas

where

d/ot = local time derivative, and

v = velocity of the field variable,
to give

[ff S av = [[gvonds + [[[ TV« [[$nis.
AY) ) VvV S

In words, this states that the change in the conserved field variable {r in the volume V is due
to surface flux plus sources minus sinks.

DATEACH Thai- TS Overheadiover2 wpd January 23, 1998 14:43



Basic Equations 2-13

We can use another mathematical identity (Gauss’ Divergence Theorem):

ffA-nds=fffV-Ad\/, “
3 \Y

where
A = any vector, such as velocity, and
V. = Del operator (eg. V=70/cx 1+ 3d/dy j+ ...).

Thus equation 3 can be rewritten:
ff{%liidV=—f[{v-wvd\m”v\/;rdv . ffiv.s(w_ -

If we assume that this statement is universally true, i.e. for any volume within the system
under consideration, then the following identity must hold at each point in space:

a_¢:~V-¢V+I‘+\7'S. (6)
ot

This is the distributed or microscopic form. Equation 3 is the lumped or macroscopic form.
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One should keep in mind the basis for these equations:

1) Conservation as an experimental observition.
It helps to keep in mind the distinctly different roles that we have historically assigned to the
players in the conservation process:

a) the local time derivative, oy/ot,

b) the advection term (flux), V-yrv,

c) the local sinks and sources, I', within a volume and

d) the local sinks and sources, S, on the surtace of a volume.

2}  The tield variables are continuous within the volume V.
BUYER BEWARE.

We now proceed to treat the mass, momentum and energy equations in turn.
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2.3 Conservation of Mass

Historically, mass was the first variable observed to be conserved:

fff‘;% (Y, Py dV = —ff Y, P vV, onds + ff[ [dv +ff S,n-ds o
v S v

S

where
p, = density of phase k (1 = liquid, 2 - vapour),
v, = volume fraction of phase, k, in volume V, and
IS, = phase sinks and sources, including chemical and nuclear effects.
The average density is defined as:
P=Y, P * Yy, P =(1 - )p +ap,, ™
where

p = average density, and
o = void fraction.
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Adding both phases together, equation 7 becomes:

ff{ éé)_t [(1 - &)p, + ap,]dV = ~” (1 - ayp,v, + a&p,v,] nds

S
(%)

S f[[ @AV (S xS mds
V SN

In our case, I'; = -T, (liquid beils or vapeur condenses) and S, = 0 (no mass sources or
sinks at surfaces). Therefore:

_[ff%%dv: ffpv-nds 9)
vV S

where

pv = -a)p, v, + ap,v,. (10)
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If we apply Gauss’ Theorem and drop the integrals we have:

~a—-B+V'pvr 0 (11)

ot

or

0
_T [(1 —e)p, +ap,] + V-[(1 -~ a)p,v; + ap,v,] = 0. (12)

This is the distributed form useful for modclling detailed flow patterns such as in the
calandria, vessels, steam generators and headers. Component codes such as THIRST
[CARS1a] and COBRA [BNW76] use this approach.
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Basic Equations 2-18

In contrast, system codes such as SOPHT [CHA77a], based on Porsching’s work [POR71],
use the lumped equations.

These codes represent a hydraulic network ol pipes by nodes joined by links, discussed in
detail in chapter 3.

Mass, pressure and energy changes occur at tl.¢ nodes.
Momentum changes occur in the links.
Flow details in pipes are not considered.
The main sources of error:
The coarseness of the discretization in the direction of flow (i.e. node size)

The friction factors
The heat transfer coefficients.
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Now, [[[ pdV is the mass, M,, in the volume. V,, of the i" node.

The surface integral can be written as surface integrals over the individuai flow paths into
and out of the volume or node. That is,

—ffpv-ndszz ijjAj, .
S

where j represents inflow and outflow links with v; > 0 for inflow and <0 for outflow.

Inherent in equation 11 is the assumption that the integral, f f p v+ n ds can be replaced by
S

the simple product p; v; A,. This implies known or assumed (usually uniform) velocity and

density profiles across the face of the link (or pipe).
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Thus we now have:
0 M.

—— = vy XL W, o

dt i

where Wj 1s the mass flow.

This is the typical representation in system cedes.
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To conclude our progressive simplification, v ¢ note the steady state form of equation 15:

- \" _
JZ oV, A = X W, =0, 0s)

For a simple circular flow loop, the mass {low rate at steady state is a constant at any point
in the loop.

Local area and density variations thus give e to velocity variations around the loop.

Local velocity then is:

Vo= - (16)
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2.4 Conservation of Momentum

In the integral sense, the rate of change of m« mentum is equai to the forces acting on the
fluid. Thus:

%fff Y, Py v, dV = ff o, nds f[[ Y, 0 f, dV +fff M, dV, an
v S v v

where
o isthestresstensor(i.e.,shortranue ¢ suiface effects including pressure, viscosity,
etc.),
f is the long range or body force (i.e.. gi wity),
and
M s the momentum interchange funct on accounting for phase change effects.
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Using Reynold’s Transport Theorem, we get

fff g"t" (Y P V) dV - j (Y, Py Vi) (v -0)ds
v :

=ff0k°nds+fff"{k[ I'de+ffkadV.
S v Y

(18)

Adding both phases together as per the mass . quation, we find:

fff% pvdV + [[pvvmd - [[onds+ [[[pfdV, o
V S AY

S

To get the microscopic form we use Gauss's tl or¢im and drop the volume integral as before
to leave:

%(pv)+V'p\'\ Vieo + pf. (20)
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The stress tensor, g, can be split into the nori al and shear components:

o =-Pl + T, 1)

where P is the pressure,
I is the unity tensor and
T 18 the shear stress tensor.

This enables the explicit use of pressure and ¢lps maintain our teruous link with reality.

Equation 21 becomes:
%(pv)+V'pvv= VP + V-1 + pf. (22)

This is the form commonly seen in the literati e, useful for distributed modelling as per the
mass conservation equation. The term, V-,  usually replaced by an empirical relation.
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For the system codes using the node-lick s' ucture, we switch back tc the macroscopic
form, Equation 20.

If the surface integral for the advective terimm  pcerformed over the inlet and outlet areas of
the pipe (link) in question, then:

[fpv(v-in)ds =ff pviv n)ds +ff pv{v-n)ds, o)
S Apy A

ouT

where A is the flow inlet area and Ayt st 2 flow outlet area.

If we assume the properties are constant ove the areas, then:

opv
3t “Apn Py Ve Yy Aour Pout Vour Your T

[f o, mds - [[{ pfdV.

S

\/T

(24)
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Alternatively we could perform a cross-sectic-aal average of each term, usually denoted by
<> where <( > = 1/A ff( ) ds.
S

If we assume the properties, V, p and A are ¢ nstant along the length of the pipe, then the
second and third terms cancel.

Equation 25 can be rewritten as:

3
V—gtz——féPI-nds+ff£(V-t+ Ndv

\Y f1 V|V :
= - A P + AP - — = o+ kt L - T Ap sin(®)e/e
ouT ¥ ouT IN ¥ out : ( D ) 28, p sin(0) g/g,

(25)
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where

g. is the gravitational constant,

g is the acceleration due to gravity

V-1 and pf evaluated by empirical correlations (the standard friction factor)

eicvation change term (0 is the angle w.r.t. the horizontal).

Note that is Aqyp # Apy then, even for constant pressure, there is a net force on the volume

causing it to accelerate if it were not restrained.

In a restrained system such as HTS piping, the piping supports exert an equal and opposite
force on the volume.

Thus when the area differences are explicitly modelled, the appropriate body forces must
be included. Generally, it is simpler to use an average or representative area for the IN and
OUT surfaces and to add entrance and exit frictional losses explicitly in the (fi/D+k) term.
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Assuming one dimensional flow and defining the mass flowas W = pVA, and L as the pipe
length, equation 26 becomes:

a—W = é

ot L

- Ap g/g_ sin(0), (26)

)

fL } W2
— + k! —
2g, 0A"

P, - P -
Py our) (D

which is the form typically used in system codes.
If circumstances rcquire, extra terms can be added.

For instance, if a pump is present this can be considered to be an external force acting
through head, AP,,.. Equation 27 would then become:

dW

L _a—t = AOUTPOUT + APy AAPpump + ... en
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The momentum flux terms (Apv?®) in equation 25 could also be added if large area or
property changes were present or the effect could be included in the friction term.

In the steady state, for a constant area pipe with no pump and no elevation change:
2 ’ 2
PIN"POUT:p(f_L+I()_Y_"(f_L‘+k] v
2g. \ D ) 2A%pg,

(28)
D

One cannot hope to accurately model such phenomena as void propagation and other two
phase transient flow effects using lumped single phase equations unless a large number of
nodes and links are used.
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Basic Eyuations

2.5 Conservation of Energy

The mathematical statement of the conservation of energy is:
[) ' ' 1 2 1
- e, + — v | dV = - 'nds + E, dV
Dl./fiykpk(k 5 k) f!qk fj.\/;k
(29)

+ fff Y, 0 IV, dV o+ ff (0, m) v, ds,
\Y S

where
e, = internal energy of phase k,
q = surface heat flux for phase k, and
E, = internal heat sources and sinks of phase k.

The right hand side terms are, respectively:

1) surface heat flux,

2) internal sources and sinks,

3) work due to long range body forces (gravity, etc.),

4)  work due to short range forces (surface tension, pressure, etc.).
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Using ngnold S Tmnsport Theo1em again:

[l av - [[ykpk( + 1) vy ne
—ff q, -nds + fff E, dV + ff[ Y P £, v, AV + [{ (0,-n) v, ds. h
; Y Y
Summing over k, the mixture equation becomes:
i at' [pe L oerfav If
ffq ds « [[f BQV  [[[ ptvay +ff (0-v)-vds,

Y Py (ek o VkJ

5

pe+%pv v-nds

(31)

where
pe = Yy, p€ + Y,Pe, and E = E +E,, etc.



Basic Equations 2-32

Using Gauss’ Theorem to change some of the surface integrals to volume integrals:
I
pe + — pv

ff{;% ) dV*f{peV'nd5+ff£v.
_ -f{q-nds +ff£EdV +ff£pf-vd\/’ *ff{v'(O'v)dV,

pvivldv

1
2

(32)

Since
o=-PI+T,

[[[Vi@wdv = [[[[V:(zv)-V-@V]aV.
M v

This 1s the total energy equation, composed of therimal terms and mechanical terms.
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We can separate the two by first generating the mechanical terms from the momentum
equation (equation 20). Forming the dot product with velocity we get:

fff%(p\’)'vdv * fff\I'(V-pvv)dV :fff‘“w’f) 4V
\Y% v )

(33)
- ([ v-VPdV + [[[ pf-vdV.
] vras - fj]
Now
v-(V:-1) =V(t'v) - 1: Vv, (34)
v:VP =V-(Pv) -PV:-v, (35)
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Busic Equations 2-35

Using these identities and subtracting equation 34 from equation 33, we get:

fff —; (pe)dV +ffpev nds = _”q.nds
f”Edv +fff AR ffva vdv.

This is the thermal form of the energy equation.

(9

This form of the energy equation can be used to generate the thermal conductance equation
for solids.

By setting fluid velocity to zero and converting surface integrals to volume integrals we get
the distributed form:

—a—t (pe) = -V-q + E, (39)

where I£ 1s the internal energy generation rate term.
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I'rom thermodynamics, for solids, we have:
0 oe oT

(pe) = p =~ = p C, =—,
atp) pat p"at

and using FFourier’s law for heat conduction:
q = -kVT,

we have the classical form of the heat conduction equation:
oT
Yoot

p C V-kVT + E

kV2T + B for space independent k.

(40)

(41)

(42)
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This is uscful for determining the temperature distributions in boiler tube walls, piping walls
and reactor tuel pencils.

To generate the node-link forms we now turn back to the integral form of equation 39, If
we assume that the density and enthalpy are uniform over the node (the volume in question),
then

0 ouU
fff_é_t(pe)dvz—é_{’ @3)
\Y%

where
U=Vpe =LApe. (44)
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The integral of the transport term can be written over the flow surfaces:

f{pev-nds =f[ pev-nds +ff pev-nds + ...., )

1 AZ

where A |, A,, etc., arc the pipe flow cross-sectional areas.

For inflow, v'n is negative.
For outflow, v'n is positive.

Assuming uniform velocity, enthalpy and density across the link (pipe) cross-section gives:
ffpev-nds - Z pev A, + E pev A,
g IN FLOW

OUT FL.OW

(46)

_Z Wen + Z Wour €our -
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The heat flux and generation terms of the thermal energy equation can be lumped into a
loosely defined heat source for the volume.

—ffq-nds+fffEdeQ. @
S v

Thercefore, the thermal energy equation becomes:

%llJ =3 Winew - % Wouregyr +Q ”{ T:VvdV - ”i PV-v dV 4

The last two terms are the irreversible and reversible internal energy conversion,
respectively.
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Basic Equations

Some system codes track enthalpy rather than internal energy. Defining:
h=enthalpy=e+P/p and H = Vph. (49)

we can rewrite equation 39 as follows:

fj£ a(pl;t_ P) 4qv + f{ (ph - P)v:nds = —f£(I'ndS

(50)

EdV + | VvdV - [ PV-vdV.
+ff£ jfir v { v

Collecting the pressure terms and simplifying yields:

fffga;(ph)d\/ + ffphv-nds = —ffq'nds +JfffEdV
v S 3 v
fff‘th+fff—~—--—dV+ SﬂPv-nds—ffJ\,fPV-vdV.

(51
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The surface integral over P can be transformed into a volume integral using Gauss’ theorem
and combined with the last term to give

[va nds - [ffpv vdV = [”v (Pv)dV - fffpv vdV
=ff£v-VPdV.

(52)

The enthalpy flux terms can be evaluated in the same manner that the energy flux terms
were in equations 46-47. Thus,

ff phv-nds = ‘Z Wiy hIN‘ " Z WOUT hOUT' (53)
5 |
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I'inally, using equations 48, 50, 53-54, equation 52 becomes:

6]1
= ZWh ZWOUT Boyr + Q

ff’thdV+fH (—~+v VP)dV.

(34)

The integral term involving pressure is often neglected since it is usually negligible
compared to the other terms.

The turbulent heating term is usually approximated by adding pump heat as a specific form
of Q.

Equation 55 in the steady state, neglecting turbulent heating and the pressure terms, is the
famihar:

Q = Z Wour hour Z Wiv by - (33)
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For a reactor or a boiler (one flow in, one flow out):

Q=W (h - h,) = WCp(TOUT - T, 1n single phase. (56)

OuT

Another special case ot equation 55 is obtained by expanding the term Q in equation 48:

—fgq-ndw”{]adve(z.

Using Newton’s Law of cooling for convection:

q'n :hN(T ‘TS)> (57)
wiere
qn = heat flux normai to surface, s,
T = Temperature of fluid
T, = Temperature of surface (wall), and

hy = heat transfer coefficient,
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Lquation 55, neglecting the pressure terms, becomes:

v aph -V "a_P ape ) Z W h Z WOUT hOUT
(58)

~ VpC,

ot ot Jt

- Ah (T - T) + VE + fff T:Vv dV.

which is useful for accounting for heat transfer between the fluid and the pipe or tube walls
(eg: boiler heat transfer).

The heat transfer coefficient, hy, is supplied through empirical relations. The turbulent
heating term [ f f T: Vv dV generally can be neglected or added as a pump heat term.
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2.6 The Equation of State

From the conservation equations, we have three equations for each phase (mass, momentum
and energy conservation) and four unknowns:

1) density, p or mass, Vp,

2) vclocity, v, or mass flow, W, or momentum, pv,

3) energy, ¢, or enthalpy, h =e + P/p, or temperature, T = fn(e) or fn(h), and
4)  pressure, P.

The fourth equation required for closure 1s the equation of state:
P = fn(h,p) or p = P,T), etc. (59)

Thermodynamic equilibrium 1s usually assumed.

Use tables of properties or curve fits. The equation of state is discussed in detail in chapter
4,
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2.7 Empirical Correlations

Supporting relations are required

N

2)

4)
5)
6)

7)

rclationship between quality and void fractions;

the stress tensor, T (friction);

heat transfer coefficients;

thermodynamic properties for the equation of state;

flow regime maps to guide the selection of empirical correlations;
special component data for pumps, valves, steam drums, ...;

critical heat flux information (not needed for the solution of the equations but a
mcasure of engineering limits is needed to guide the use of the solutions;
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The three major assuumptions made for the primary heat transport system are:
1) one dimensional flow;

2)  thermal equilibrium (except for the pressurizer under insurge); and

3)  one fluid model (i.e. mixture equations).

These are required because of state of the art limitations (however, two fluid models ae
being used increasingly in recent years.).

Lmpirical correlations are discussed in more detail in chapter 7.
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2.8 Solution Overview

Iigure 2.2 illustrates the equations and the information links between them.

In words, the momentum equation gives the flows or velocities from one node to another,
or from onc grid point to another, based on a given pressure, flow, mass and energy

distribution.

The updated flows are used by the mass and energy equations to update the mass and energy
contents at each location.

The new mass and energy are given to the equation of state to update the pressure
distribution.

The new pressure, along with the new densities and energies are used by the momentum
equation, and so on.

In this manner, a time history cof the fluid evolution is obtained.
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A further point to note on the solution overview is that each phase in a multiphase flow has
a main information flow path as shown in figure 2.3.

In the full UVUEUP (unequal velocity, energy and pressure) model, there are two distinct
phases:

the vapour phase

the liquid phase.

If a simplified model was imposed, this essentially means that the planes would touch at
some point.

For instance, if equal pressure in both phases was assumed, then figure 2.4 would resuit.
Here, the equation of state is common to both planes.

The HEM (homogeneous equilibrium model) is the fully coliapsed case where both planes
collapse into one (figure 2.2).
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2.9 Exercises

1. For a pool-type research reactor as shown in figure 2.5, which form of the mass,
momentum and energy conservation equations are the appropriate ones to use for the
following cases:

a. Pipe connecting the pool to the Hold Up Tank (HUT)

b. Mixing within the HUT

c. Pipe connecting the HUT to the Heat Exchanger (HX)

d. The HX

c. Flow through the fuel assemblies.

f.  The Pool

F

or each case, write out the appropriate equaticns.
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2. For the same pool-type reactor:

a.  Derive the simple steady state overall reactor core heat balance equation relating
the reactor power, core flow and core AT. Defend your assumptions.

b. Would the reactor coolant outlet AT change very much when the reactor power
changes? Explain.

c. Derive the simple steady state equation to determine the Heat Transport System
flow. Defend your assumptions.

d.  Would the reactor coolant flow change very much when the reactor power or
temperature changes? Explain.

¢. Based on the above, in modelling which needs to be determined first, the heat
transfer situation or the hydraulic situation?

3.  Referring to figure 2.2:
a. Explainthe inter-relationship between the mass, momentum and energy equations
and the equation of state.
b.  For the integral form, devise a simple solution scheme for the transient equations.
Show what equations are being solved and how they are being solved. Flow chart
your scheme.
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Figure 2.1 Derivation path.

D TEACH Tha



Basi: Equations 2:53
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Figure 2.2 The four cornerstore single phase flow equations and the flow of information tetween them.
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Figure 2.4 The four cornerstone equations for the two-fluid model with equal pressure of the two phases.

DATEACH Thai-HT52'Overhead\over2. wp8 January 23, 1993 1748



8bL| §661 '(Z AsEnuel gdm TIaACAPIIACNIS LH LD VLN G

=
r#—ﬂ
-3

.nud
7 oGt ;ﬁ, 1]

(o)

"103010d 12419501 adAy-pood apdung g1z sanidyy

96-¢

suouonbi aisng



	Chapter 2 Basic Equations for Thermalhydraulic Systems Analysis
	2.1 Introduction
	2.1.1 Chapter Content
	2.1.2 Learning Outcomes
	2.1.3 The Chapter Layout

	2.2 Conservation
	2.3 Conservation of Mass
	2.4 Conservation of Momentum
	2.5 Conservation of Energy
	2.6 The Equation of State
	2.7 Empirical Correlations
	2.8 Solution Overview
	2.9 Exercises

	Figures
	2.1 Derivation path
	2.2 The four cornerstone single phase flow equations and the flow of information between them
	2.3 The four cornerstone equations for the full two-fluid model
	2.4 The four cornerstone equations for the two-fluid model with equal pressure of the two phases
	2.5 Simple pool-type research reactor


